机器学习极简化代码实现列表
对于机器学习的初学者来说,极简化的代码实现实例是快速了解机器学习算法,并学习从零开始实现算法的最佳工具。以下是几种机器学习算法的代码实现全部基于Python, 使用了numpy, scipy 和autograd等扩展.
- Deep learning (MLP, CNN, RNN, LSTM)
- Linear regression, logistic regression
- Random Forests
- Support vector machine (SVM) with kernels (Linear, Poly, RBF)
- K-Means
- Gaussian Mixture Model
- K-nearest neighbors
- Naive bayes
- Principal component analysis (PCA)
- Factorization machines
- Restricted Boltzmann machine (RBM)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Gradient Boosting trees (also known as GBDT, GBRT, GBM, XGBoost)
- Reinforcement learning (Deep Q learning)
第一时间获取面向IT决策者的独家深度资讯,敬请关注IT经理网微信号:ctociocom
除非注明,本站文章均为原创或编译,未经许可严禁转载。
相关文章: